Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Int J Mol Sci ; 24(9)2023 Apr 26.
Article in English | MEDLINE | ID: covidwho-2316764

ABSTRACT

Acute lung injury (ALI), caused by intrapulmonary or extrapulmonary factors such as pneumonia, shock, and sepsis, eventually disrupts the alveolar-capillary barrier, resulting in diffuse pulmonary oedema and microatasis, manifested by refractory hypoxemia, and respiratory distress. Not only is ALI highly lethal, but even if a patient survives, there are also multiple sequelae. Currently, there is no better treatment than supportive care, and we urgently need to find new targets to improve ALI. Histone deacetylases (HDACs) are epigenetically important enzymes that, together with histone acetylases (HATs), regulate the acetylation levels of histones and non-histones. While HDAC inhibitors (HDACis) play a therapeutic role in cancer, inflammatory, and neurodegenerative diseases, there is also a large body of evidence suggesting the potential of HDACs as therapeutic targets in ALI. This review explores the unique mechanisms of HDACs in different cell types of ALI, including macrophages, pulmonary vascular endothelial cells (VECs), alveolar epithelial cells (AECs), and neutrophils.


Subject(s)
Acute Lung Injury , Endothelial Cells , Humans , Endothelial Cells/metabolism , Histone Deacetylases/metabolism , Lung/metabolism , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Alveolar Epithelial Cells/metabolism , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Histone Deacetylase Inhibitors/metabolism
2.
Commun Biol ; 6(1): 102, 2023 01 26.
Article in English | MEDLINE | ID: covidwho-2212038

ABSTRACT

Protein acetylation plays a key role in regulating cellular processes and is subject to aberrant control in diverse pathologies. Although histone deacetylase (HDAC) inhibitors are approved drugs for certain cancers, it is not known whether they can be deployed in other therapeutic contexts. We have explored the clinical HDAC inhibitor, zabadinostat/CXD101, and found that it is a stand-alone regulator of the adaptive immune response. Zabadinostat treatment increased expression of MHC class I and II genes in a variety of cells, including dendritic cells (DCs) and healthy tissue. Remarkably, zabadinostat enhanced the activity of DCs, and CD4 and CD8 T lymphocytes. Using an antigenic peptide presented to the immune system by MHC class I, zabadinostat caused an increase in antigen-specific CD8 T lymphocytes. Further, mice immunised with covid19 spike protein and treated with zabadinostat exhibit enhanced covid19 neutralising antibodies and an increased level of T lymphocytes. The enhanced humoral response reflected increased activity of T follicular helper (Tfh) cells and germinal centre (GC) B cells. Our results argue strongly that zabadinostat has potential to augment diverse therapeutic agents that act through the immune system.


Subject(s)
COVID-19 , Immunity, Humoral , Mice , Animals , T-Lymphocytes, Helper-Inducer , Histone Deacetylase Inhibitors/pharmacology , Adaptive Immunity , Antigens
3.
Cells ; 11(10)2022 05 12.
Article in English | MEDLINE | ID: covidwho-1957233

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease with limited therapeutic options, and there is a huge unmet need for new therapies. A growing body of evidence suggests that the histone deacetylase (HDAC) family of transcriptional corepressors has emerged as crucial mediators of IPF pathogenesis. HDACs deacetylate histones and result in chromatin condensation and epigenetic repression of gene transcription. HDACs also catalyse the deacetylation of many non-histone proteins, including transcription factors, thus also leading to changes in the transcriptome and cellular signalling. Increased HDAC expression is associated with cell proliferation, cell growth and anti-apoptosis and is, thus, a salient feature of many cancers. In IPF, induction and abnormal upregulation of Class I and Class II HDAC enzymes in myofibroblast foci, as well as aberrant bronchiolar epithelium, is an eminent observation, whereas type-II alveolar epithelial cells (AECII) of IPF lungs indicate a significant depletion of many HDACs. We thus suggest that the significant imbalance of HDAC activity in IPF lungs, with a "cancer-like" increase in fibroblastic and bronchial cells versus a lack in AECII, promotes and perpetuates fibrosis. This review focuses on the mechanisms by which Class I and Class II HDACs mediate fibrogenesis and on the mechanisms by which various HDAC inhibitors reverse the deregulated epigenetic responses in IPF, supporting HDAC inhibition as promising IPF therapy.


Subject(s)
Histone Deacetylases , Idiopathic Pulmonary Fibrosis , Fibroblasts/metabolism , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Histone Deacetylases/metabolism , Histones/metabolism , Humans , Idiopathic Pulmonary Fibrosis/pathology , Transcription Factors/metabolism
4.
Front Immunol ; 13: 841716, 2022.
Article in English | MEDLINE | ID: covidwho-1855353

ABSTRACT

The COVID-19 pandemic has had a devastating impact worldwide and has been a great challenge for the scientific community. Vaccines against SARS-CoV-2 are now efficiently lessening COVID-19 mortality, although finding a cure for this infection is still a priority. An unbalanced immune response and the uncontrolled release of proinflammatory cytokines are features of COVID-19 pathophysiology and contribute to disease progression and worsening. Histone deacetylases (HDACs) have gained interest in immunology, as they regulate the innate and adaptative immune response at different levels. Inhibitors of these enzymes have already proven therapeutic potential in cancer and are currently being investigated for the treatment of autoimmune diseases. We thus tested the effects of different HDAC inhibitors, with a focus on a selective HDAC6 inhibitor, on immune and epithelial cells in in vitro models that mimic cells activation after viral infection. Our data indicate that HDAC inhibitors reduce cytokines release by airway epithelial cells, monocytes and macrophages. This anti-inflammatory effect occurs together with the reduction of monocytes activation and T cell exhaustion and with an increase of T cell differentiation towards a T central memory phenotype. Moreover, HDAC inhibitors hinder IFN-I expression and downstream effects in both airway epithelial cells and immune cells, thus potentially counteracting the negative effects promoted in critical COVID-19 patients by the late or persistent IFN-I pathway activation. All these data suggest that an epigenetic therapeutic approach based on HDAC inhibitors represents a promising pharmacological treatment for severe COVID-19 patients.


Subject(s)
COVID-19 Drug Treatment , Histone Deacetylase Inhibitors , COVID-19 Vaccines , Cytokines/metabolism , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Histone Deacetylases/metabolism , Humans , Immunity , Pandemics , SARS-CoV-2
5.
Sci Rep ; 11(1): 3379, 2021 02 09.
Article in English | MEDLINE | ID: covidwho-1075252

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread worldwide as a pandemic throughout 2020. Since the virus uses angiotensin-converting enzyme 2 (ACE2) as a receptor for cellular entry, increment of ACE2 would lead to an increased risk of SARS-CoV-2 infection. At the same time, an association of the ABO blood group system with COVID-19 has also been highlighted: there is increasing evidence to suggest that non-O individuals are at higher risk of severe COVID-19 than O individuals. These findings imply that simultaneous suppression of ACE2 and ABO would be a promising approach for prevention or treatment of COVID-19. Notably, we have previously clarified that histone deacetylase inhibitors (HDACIs) are able to suppress ABO expression in vitro. Against this background, we further evaluated the effect of HDACIs on cultured epithelial cell lines, and found that HDACIs suppress both ACE2 and ABO expression simultaneously. Furthermore, the amount of ACE2 protein was shown to be decreased by one of the clinically-used HDACIs, panobinostat, which has been reported to reduce B-antigens on cell surfaces. On the basis of these findings, we conclude that panobinostat could have the potential to serve as a preventive drug against COVID-19.


Subject(s)
ABO Blood-Group System/metabolism , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Histone Deacetylase Inhibitors/pharmacology , Panobinostat/pharmacology , Butyric Acid/pharmacology , COVID-19/prevention & control , Cell Line , Epithelial Cells/drug effects , Gene Expression Regulation/drug effects , Humans , Serine Endopeptidases , COVID-19 Drug Treatment
6.
Life Sci ; 266: 118883, 2021 Feb 01.
Article in English | MEDLINE | ID: covidwho-974347

ABSTRACT

Coronavirus disease 2019 (COVID-19) has rapidly spread around the world causing global public health emergency. In the last twenty years, we have witnessed several viral epidemics such as severe acute respiratory syndrome coronavirus (SARS-CoV), Influenza A virus subtype H1N1 and most recently Middle East respiratory syndrome coronavirus (MERS-CoV). There were tremendous efforts endeavoured globally by scientists to combat these viral diseases and now for SARS-CoV-2. Several drugs such as chloroquine, arbidol, remdesivir, favipiravir and dexamethasone are adopted for use against COVID-19 and currently clinical studies are underway to test their safety and efficacy for treating COVID-19 patients. As per World Health Organization reports, so far more than 16 million people are affected by COVID-19 with a recovery of close to 10 million and deaths at 600,000 globally. SARS-CoV-2 infection is reported to cause extensive pulmonary damages in affected people. Given the large number of recoveries, it is important to follow-up the recovered patients for apparent lung function abnormalities. In this review, we discuss our understanding about the development of long-term pulmonary abnormalities such as lung fibrosis observed in patients recovered from coronavirus infections (SARS-CoV and MERS-CoV) and probable epigenetic therapeutic strategy to prevent the development of similar pulmonary abnormalities in SARS-CoV-2 recovered patients. In this regard, we address the use of U.S. Food and Drug Administration (FDA) approved histone deacetylase (HDAC) inhibitors therapy to manage pulmonary fibrosis and their underlying molecular mechanisms in managing the pathologic processes in COVID-19 recovered patients.


Subject(s)
COVID-19/complications , Drug Repositioning , Histone Deacetylase Inhibitors/therapeutic use , Pulmonary Fibrosis/drug therapy , Transforming Growth Factor beta/metabolism , Adult , Aged , COVID-19/pathology , COVID-19/therapy , Coronavirus Infections/pathology , Extracellular Matrix/pathology , Extracellular Matrix/virology , Histone Deacetylase Inhibitors/pharmacology , Humans , Middle Aged , Pulmonary Fibrosis/virology , Risk Factors , Signal Transduction , Survivors
SELECTION OF CITATIONS
SEARCH DETAIL